E lectron B eam Melting

The Future is Here! Titanium or Cobalt Chromium Alloy Parts

Race Car Suspension 6 parts in 4.5 hrs.

Turbo Machinery

CAD directly to METAL Free Form Fabrication

Your organic or optimized design is NOT CONSTRAINED by conventional techniques!

- Direct Manufacturing
- Fully-Functional Prototyping
- Complex Geometries
- Costs comparable to castings
- Material performance comparable to CNC billet
- Speeds as high as 1.6" per hour
- Build envelope of 8" x 8" x 7"

Direct Manufacturing

Functional Prototypes

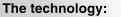
Turbine Blade

Race Car Suspensions

Performance Pistons

Lightweight Designs

Biomedical Products


EBM - Electron Beam Melting Applications with Ti6Al4V or ASTM F75

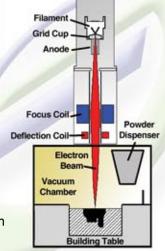
CAD

T O

METAL

Arcam EBM®

- Electrons are emitted from a filament, which is heated to > 2500° C
- The electrons are accelerated through the anode to half the speed of light
- A magnetic field lens brings the beam into focus
- Another magnetic field controls the deflection of beam
- When the electrons hit the powder, kinetic energy is transformed to heat.


Retained chemical composition due to:

- Good vacuum at less than 10⁻⁴ mbar
- Very small melt volume
- Rapid cooling from liquid to solid state
- Continuous stirring in the meltpool

The material from the EBM process:

- Naturally aged condition
- Fully melted
- Vacuum melt quality eliminates impurities
- Microstructure similar or better than cast
- Controlled grain size
- Monitored thermal environment.
 - Good form stability.
 - Low residual stress in part
 - Consistency
- High yield strength properties

Ti6Al4V Alloy	EBM	Spec.
Aluminum, Al	5.7%	5.5-6.5%
Vanadium, V	3.9%	3.5-4.5%
Iron, Fe	0.1%	<0.3%
Oxygen, O	0.1%	<0.2%
Nitrogen, N	0.03%	<0.05%
Hydrogen, H	<0.0005%	<0.01%

ASTM F75 Alloy	EBM	Spec.
Chromium, Cr	28.5%	27-30%
Molybdenum, Mo	6%	5-7%
Carbon, C	0.3%	Max 0.35%
Iron, fe	0.2%	Max 0.75%
Nickel, Ni	0.25%	0.5%
Maganese, Mn	0.5%	Max 1%
Silicone, Si	0.7%	Max 1%
Nitrogen, N	0.15%	Max 0.25%

	Ti6Al4V	ASTM F75
Yield strength (Rp 0.2)	910-960 MPa	600 MPa
Ultimate Tensile strength (Rm)	970-1030 MPa	900 MPa
Rockwell hardness	30-35 HRc	34 HRC
Elongation	12-16 %	10%
Fatigue strength@500-540 MPa ~After Hot Isostatic Pressing	>1.3 million cycles	

www.rapidtitanium.com

25335 Interchange Ct., Farmington Hills, MI 48335 313-215-3076 Fax: 206-309-0758 project@rapidtitanium.com